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Abstract

More than three decades ago, Przemieniecki introduced a formulation for the free vibration analysis of bar and beam

elements based on a power series of frequencies. In the present paper, the authors generalize this formulation for the

analysis of the dynamic response of elastic systems submitted to arbitrary nodal loads as well as initial displacements.

Based on the mode-superposition method, a set of coupled, higher-order di�erential equations of motion is transformed

into a set of uncoupled second-order di�erential equations, which may be integrated by means of standard procedures.

Motivation for this theoretical achievement is the hybrid boundary element method, which has been developed by the

authors for time-dependent as well as frequency-dependent problems. This formulation, as a generalization of PianÕs
previous achievements for ®nite elements, yields a sti�ness matrix for which only boundary integrals are required, for

arbitrary domain shapes and any number of degrees of freedom. The use of higher-order frequency terms drastically

improves numerical accuracy. The introduced modal assessment of the dynamic problem is applicable to any kind of

®nite element for which a generalized sti�ness matrix is available. Some academic examples illustrate the theory. Ó 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Problem formulation

The time e�ect to be considered in this theoretical outline is due to the inertia of an elastic body. For the
sake of simplicity, damping is not considered, since this e�ect, although not easy to be grasped physically,
can generally be incorporated into an existing structural model by means of well established mathematical
tools. Also, one is restricted to both material and geometric linear analysis. Particularization to problems of
potential is straightforward.
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One is attempting to ®nd the displacement ®eld ui with a corresponding stress ®eld rij that satis®es the
dynamic partial di�erential equation

rij;j � f i ÿ q�ui � 0 in X �1�
in a domain X, for given body forces f i and speci®c body mass density q. Subscripts i and j may assume
values 1, 2 and 3, as referred to global coordinates x, y and z, respectively. A subscript after a colon denotes
derivative with respect to the corresponding coordinate direction. Repeated indices indicate a three-terms
summation, in the general case of three-dimensional problems. A dot indicates derivative with respect to
time.

The displacements must satisfy the boundary condition

ui � ui along Cu �2�
for prescribed boundary displacements ui. Moreover, the stress ®eld must be in equilibrium with prescribed
forces ti along the complementary part Cr of the boundary

rijgj � ti along Cr: �3�
All variables are functions of time. The elastic body is being observed during the time interval �t0; t1�.

Then, initial displacements as well as velocities in the domain have to be known at the time t � t0, in general

ui�t � t0� � ui�t � t0�
_ui�t � t0� � _ui�t � t0� in X: �4�

A solution exactly satisfying all four equations above is possible only in certain particular cases. It is far
beyond the scope of this paper to discuss the numeric models that can be developed to approximately deal
with the proposed problem. However, a few words are necessary to introduce the motivation that is
presently driving the authors.

In terms of spatial discretization, all mathematical approaches envisaged for solving the problem fall
into either a domain or a boundary model, considering spatial allocation of the primary unknown pa-
rameters as well as whether domain or boundary integrals are to be carried out (``boundary element''
formulations using internal nodal points as well as needing domain integration do also exist (Brebbia et al.,
1984)). In the frame of a mathematical discretization model, Eq. (1) is usually transformed into a set of
nodal equilibrium equations, which are exactly satis®ed at the spatially distributed nodal points. The
formulation is not based on a priori ful®llment of Eq. (1), although convergence of results is assured by
increasing the number of nodal points. However, this is true only if the nodal points are distributed all over
the domain (as in the case of both ®nite element and ®nite di�erence methods). In a plain boundary for-
mulation, increasing the number of boundary nodal parameters does not improve results, at least beyond
some threshold, unless ful®llment of Eq. (1) is taken as a premise (Dumont and de Oliveira, 1993a,b; de
Oliveira, 1994). The developments of this paper apply to both approach types, although it is more relevant
to a boundary discretization model, since focus is centered on the most accurate ful®llment of Eq. (1).

Moreover, time-dependent problems may be dealt with either in a time-domain formulation or in a
frequency-domain frame. In a time-domain formulation, attempt is made to solve the spatial problem (as
described in the above paragraph) for a given instant of time and then integrate the resulting nodal dif-
ferential equations of time either numerically (generally) or analytically starting with the initial conditions
given by Eq. (4). Preferentially, however, frequency-domain implementations are carried out. In this for-
mulation, the ®eld quantities as well as nodal variables are expressed as a series of products of separate
space and time functions. The separation constants that arise in this formulation are usually identi®ed with
circular frequencies. As a consequence of this procedure, plain frequency analyses of a problem may be
carried out, independently of the time variable (stationary problems), and, moreover, free-vibration
characteristics of the elastic body may be investigated.
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Quite frequently, however, one starts with the frequency-domain formulation of a problem and then
combines the solution with the separated time-dependent functions in order to obtain the dynamic response
of the elastic body to a given time-varying solicitation (transient analysis). This is the subject of the present
paper.

1.2. An assessment of a formulation with higher-order frequency terms

Before entering the core of this paper, one should assess the problem of a frequency-domain formulation
with higher-order frequency terms. For this sake, consider a truss element of constant cross-section A,
length `, Young modulus E and speci®c mass density q submitted to harmonic vibration. Writing k � x=c,
in which x is a given circular vibration frequency and c � ���������

E=q
p

is the velocity of propagation of the
longitudinal elastic wave, one expresses the corresponding e�ective, frequency-dependent sti�ness matrix K

of the two-degrees of freedom truss element, together with its eigenvalues xj, as

K � EA
k

sin�k`�
cos�k`� ÿ1
ÿ1 cos�k`�

� �
! x0 � 0 �static case�; xj � jpc

`
j � 1; 2; 3; . . . �5�

These results are analytically exact. On the other hand, the matrix K in Eq. (5) may be expanded as a
frequency series, as given below, up to the sixth power, together with its ®rst non-zero vibration frequency

K � EA
`

1 ÿ1
ÿ1 1

� � 
ÿ �k`�

2

6

2 1
1 2

� �
ÿ �k`�

4

45

8 7
7 8

� �
ÿ �k`�

6

15120

32 31
31 32

� �!
! x1 � 1:00438

pc
`
: �6�

This eigenvalue is only 0.4% above the exact solution, according to Eq. (5). However, instead of such an
accurate matrix, as given in Eq. (6), most analysts use its ®rst approximation, which yields a 10% wrong
vibration frequency

K � EA
`

1 ÿ1
ÿ1 1

� � 
ÿ �k`�

2

6

2 1
1 2

� �!
! x1 � 1:1026

pc
`
: �7�

The use of higher-orders terms in sti�ness and mass matrices, as outlined above, was apparently in-
troduced by Przemieniecki (1968), but he has only developed truss and beam element matrices and only
performed vibration analyses.

1.3. How general matrices with higher-order frequency terms originate

Moreover, it is worth mentioning that frequency-dependent matrices also may arise in the frame of a
traditional ®nite element formulation, if one applies dynamic reduction of the degrees of freedom. Con-
sider, for instance, a ®xed-free bar (as illustrated in Fig. 2) made of two truss elements with matrices given
by Eq. (7). Accounting for the boundary condition, both structureÕs matrix and ®rst vibration frequency are

K � EA
`

2 ÿ1
ÿ1 1

� � 
ÿ �k`�

2

6

4 1
1 2

� �!
! x1 � 0:25646

pc
`
: �8�

(This frequency is 2.6% higher than the exact one.) If one condenses statically the ®rst, internal degree of
freedom (GuyianÕs reduction, according to Przemieniecki (1968)), one obtains the reduced matrix and the
corresponding free vibration frequency

KS � EA
`

1

2

� ��
ÿ �k`�2 5

12

� ��
! x1 � 0:34869

pc
`

�9�

which is 35.9% higher than the target value given in Eq. (8).
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On the other hand, one may condense dynamically the ®rst degree of freedom of the matrix given in Eq.
(8) by expanding the frequency-dependent inverse matrix in series of �k`�. Keeping �k`�6 as the highest
power in the resulting condensed matrix KD � K22 ÿ K21Kÿ1

11 K12, one obtains

KD � EA
`

1

2

� ��
ÿ �k`�2 2

3

� �
ÿ �k`�4 1

8

� �
ÿ �k`�6 1

24

� ��
! x1 � 0:25717

pc
`
: �10�

This frequency value is only 0.27% higher than the target one given in Eq. (8).
It is straightforward to develop in series the inverse of a general frequency-dependent matrix. The al-

gorithm (written for ¯exibility matrices F instead of sti�ness matrices K) is given in Eq. (38), as a very
particular case of the inverse of a matrix power series in which the ®rst matrix coe�cient is singular.

This simple example illustrates how matrices with higher-order frequency terms may originate from
conventional formulations. Dynamic condensation is not the subject of this paper. However, it is worth
observing that a condensation method that introduces higher-order terms might be developed in combi-
nation with some more traditional ones, as the component mode synthesis (Petyt, 1990; Hou, 1969), or the
procedure proposed by Paz (1997).

In Section 2 of this paper, one is aimed at showing that general frequency-dependent e�ective sti�ness
matrices may be obtained, in the frame of the hybrid boundary element method, for seemingly any kind of
problem. However, the reader may skip this section and go directly to the core of the present subject,
starting in Section 3, which presupposes that a general ®nite element sti�ness matrix with higher-order
frequency terms is already available.

2. The hybrid boundary element method in the frequency domain

In the present hybrid formulation (Dumont and de Oliveira, 1997; 1998; 1999a,b), one assumes that a
displacement ®eld

~ui � uimdm�t� along C such that ~ui � ui along Cu �11�
is known along the boundary in terms of polynomial interpolation functions uim and some time-dependent
nodal displacement parameters dm�t�, in which the subscript m refers to each one of the degrees of freedom
of the discretized model.

One also assumes a di�erent displacement ®eld

ui � u�i � up
i in X �12�

for the entire domain, in such a way that the dynamic equilibrium Eq. (1) is identically satis®ed. It means
that one can de®ne an arbitrary particular solution up

i , such that the corresponding stress ®eld rp
ij satis®es

the equation

rp
ij;j � f i ÿ q�up

i � 0 in X �13�
and, most important, it means that one can ®nd a homogeneous solution u�i with corresponding stress ®eld
r�ij that satis®es identically

r�ij;j ÿ q�u�i � 0 in X �14�
This characterizes a fundamental solution

u�i � u�im�t�p�m�t� and r�ij � r�ijm�t�p�m�t� �15�
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to be obtained in terms of some time-dependent nodal force parameters p�m�t�, in which the subscript m
refers to each one of the degrees of freedom of the discretized model.

Given the assumptions above, one shall look for a means of relating the ®elds ~ui, de®ned on C by Eq.
(11), and u�i , de®ned in X by Eqs. (12)±(15), in such a way that Eq. (3) is best satis®ed. This may be achieved
by means of a variational principle, in terms of the Hellinger±Reissner potential, generalized for time-
dependent problems (Dumont and de Oliveira, 1997),Z t1

t0

�
ÿ
Z

X
�drij;j ÿ qd�ui��ui ÿ ~ui�dX�

Z
C

drijgj�ui ÿ ~ui�dC�
Z

X
d~ui�rij;j � f i ÿ q�ui�dX

ÿ
Z

C
d~ui�rijgj ÿ ti�dC

�
dt� 0 �16�

in which one assumes as necessary variational prerequisites that d~ui � 0 along Cu and that dui � 0 at both
time interval extremities t0 and t1. In the above equation, gj are the direction cosines of the outward normal
to the surface element dC.

After interpolation of the variables ~ui, according to Eq. (11), as well as u�i and r�ij, according to Eq. (15),
one arrives at the expression, for a given time instant t

dp�
T

Fp�� ÿHd� b� ÿ ddT HTp�
ÿ � tÿ p

� � 0: �17�
This equation is expressed in matrix notation, for convenience. The quantities p� and d are vectors con-
taining the nodal parameters p�m and dm, respectively ± the primary unknowns of the problem. The sym-
metric ¯exibility matrix F, the cinematic transformation matrix H and the vector b of nodal displacements
equivalent to body forces are de®ned in terms of boundary integrals as

F

HT

bT

24 35 � Fmn

Hmn

bn

24 35 � Z
C

u�im
uim

up
i

8<:
9=;hr�ijngjidC�

u�im
uim

up
i

8<:
9=; dinh i: �18�

Owing to the singularity of the fundamental solution, the boundary integral represented above is sin-
gular and has to be split into a Cauchy principal value and a discontinuous term. Related to this singularity,
a generalized Kronecker delta is introduced, meaning that din � 0 in general, except if the indices i and n
refer to the same degree of freedom, when din � 1.

Nodal forces vectors t and p, equivalent to body forces f i and traction forces ti, respectively, as intro-
duced in Eq. (17), are de®ned as

t p� � � tm pm� � �
Z

C
uimf ghrp

ijgj tiidC: �19�

For arbitrary values of dp� and dd, Eq. (17) becomes

Fp� ÿHd� b � 0 and HTp� � tÿ p � 0; �20�
or

HTFÿ1Hd � pÿ tÿHTFÿ1b �21�
in which

HTFÿ1H � K �22�
constitutes a symmetric, positive semi-de®nite sti�ness matrix that transforms nodal displacements d into
nodal forces in equilibrium with the set of equivalent nodal forces de®ned at the right-hand side of Eq. (21).
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In all matrices de®ned above, time-independent terms may be considered explicitly, as they correspond
to the static formulation. For matrices F and H, in particular

F � F0 � F�t�;
H � H0 �H�t�: �23�

The evaluation of F(t) by means of the integral indicated in Eq. (18) o�ers no mathematical di�culty. On
the other hand, elements about the main diagonal of the static ¯exibility matrix F0, for m and n referring
to the same node, cannot be evaluated by means of this integral. This mathematical impossibility is con-
sistent with the assumption that the nodal point is situated outside the domain X, although in®nitely close
to it. The determination of these elements has to be carried out indirectly by requiring that F0 satis®es the
orthogonality criterion (Dumont, 1987, 1989; Dumont and de Oliveira, 1995)

F0V � 0 �24�

in which V is a basis of eigenvectors corresponding to zero-eigenvalues of the matrix HT
0

HT
0 V � 0: �25�

Eqs. (17)±(22), as established above for time-dependent problems, are formally the same ones obtained
by the ®rst author for static problems (Dumont, 1987,1989). The numerical implementation of this for-
mulation for a time-dependent fundamental solution is very complicated, since an additional singularity
with respect to time has to be considered. However, time-harmonic as well as general transient problems
may be considered in the frame of a frequency-domain formulation.

2.1. Frequency-domain formulation

2.1.1. Basic equations
For this sake, one ®rst assumes that the trial solutions ~ui along C, Eq. (11), and u�i in X, Eq. (15), may be

expressed in terms of separate variables of space and time, for a given circular frequency of vibration x

~ui � uimdm�x�s�t;x� along C; �26�

u�i � u�im�x�p�m�x�s�t;x�; r�ij � r�ijm�x�p�m�x�s�t;x� in X; �27�
where s�t;x� is de®ned in such a way that

o2s�t;x�
ot2

� ÿx2s�t;x�: �28�

The formulation above relies on the existence of a fundamental solution, as introduced in Eq. (27),
which, by de®nition, satis®es Eq. (14) for a given circular frequency x

r�ij;j�x� � x2qu�i �x� � 0 in X: �29�
Such fundamental solutions are well known in the literature for both elasticity and potential problems. For
two-dimensional problems, they are linear combinations of Bessel functions of order zero of the ®rst and
second kinds. An imposition, known as Sommer®eld radiation condition, that at in®nity the velocity _u�i �t�
must tend to zero apparently forces that the fundamental solution be expressed as a complex function.
However, it is the authorsÕ point of view that such complex fundamental solution is needed only in the
frame of the conventional boundary element method, which does not consider the balance of forces ade-
quately (Dumont, 1998). The present hybrid formulation is variationally consistent, which ensures that
equilibrated actions at a ®nite region dissipate at in®nity. Moreover, one notes that Bessel functions to-
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gether with their derivatives tend to zero as the argument increases, thus assuring automatic satisfaction
of the Sommer®eld radiation condition at in®nity. (This issue certainly deserves a separate paper for a
proper discussion.) One might, for the sake of conciseness, express s�t;x� as complex. In this case, the nodal
quantities d�x� and p��x� in Eqs. (26) and (27) are also complex. However, the products d�x�s�t;x� and
p��x�s�t;x� must be always real. All implementations of the present formulation, for problems in both
®nite and in®nite regions, consider a fundamental solution expressed in terms of real variables, which
simpli®es the code and reduces computational time at no expense of accuracy.

The solution of Eq. (29) may be adequately expressed as

u�im�x�  u�im�0� � u�im�x� and r�ijm�x�  r�ijm�0� � r�ijm�x� �30�
in which u�im�0� and r�ijm�0� correspond to the static fundamental solution. On the other hand, the frequency-
dependent terms u�im�x� and r�ijm�x� are by construction non-singular functions that require no special
consideration for the sake of the integration indicated in Eq. (18). For two-dimensional isotropic problems
of potential, for instance, the solution of the Helmholtz equation in terms of a radial distance r and the
frequency number k is the two-terms expression

h� � ÿ1

2p
ln�r� � ÿ1

2p
p
2

BesselY �0; kr�
�

ÿ ln�r� ÿ ln
k
2

� ��
� c

�
BesselJ�0; kr�

�
: �31�

Then, according to Eqs. (26)±(28), Eq. (20) become, for a given circular frequency x

F�x�p��x�� ÿH�x�d�x� � b�x��s�t;x� � 0;

HT�x�p��x�ÿ � t�x� ÿ p�x��s�t;x� � 0
�32�

in which b�x�; t�x� and p�x� are, according to Eqs. (18) and (19), the harmonic components of the general
time-dependent vectors b, t and p, respectively.

As a consequence of writing the fundamental solution in the shape of Eq. (30), the matrices F, H and b

above may be formally represented as

F�x� � F0 � Fx; H�x� � H0 �Hx; b�x� � b0 � bx: �33�
In these equations, the frequency-dependent terms Fx;Hx; bx involve no singularities. The terms F0;H0; b0

correspond to the matrices of a static formulation, with integration singularities that can be dealt with
adequately. Moreover, the terms about the main diagonal of F0 can be obtained by means of spectral
properties, as given by Eq. (24), that a�ect exclusively the static formulation, for both cases of ®nite and
in®nite regions.

For a periodic loading applied with a certain circular frequency x, the stationary response of the
structure is obtained from Eq. (32) as

F�x�p��x� ÿH�x�d�x� � b�x� � 0;

HT�x�p��x� � t�x� ÿ p�x� � 0:
�34�

2.1.2. Transient analysis in the frequency domain
Instead of formulating a problem for a given value of the circular frequency, one may express the

fundamental solution, Eq. (30), as a power series of frequencies. In such a case, series expansion of the
fundamental solution of Eq. (31), for instance, yields

h� � ÿ ln�r�
2p
� k2r2

27648p
ln�r��� ÿ 1�3456ÿ 216 ln�r�� ÿ 324�k2r2 � 6 ln�r�� ÿ 11�k4r4

��O�r8�:
�35�

N.A. Dumont, R. de Oliveira / International Journal of Solids and Structures 38 (2001) 1813±1830 1819



As a consequence, the matrices F and H, de®ned in Eq. (18), as well as K, de®ned in Eq. (22), also become
power series of frequencies with an arbitrary number n of terms

F �
Xn

i�0

x2iFi; H �
Xn

i�0

x2iHi; K �
Xn

i�0

x2iKi: �36�

In the above equation and in the following equations, the indices i, j and n are re-introduced with di�erent
meanings, as compared with the initial sections of this paper. Moreover, summation is only assumed when
explicitly indicated.

2.1.3. On the evaluation of the sti�ness matrix K as a power series of frequencies
In order to express the sti�ness matrix K as a power series of frequencies, according to Eq. (36), one ®rst

has to invert the ¯exibility matrix F, as expressed in Eq. (21).
For an in®nite domain, the frequency-free term F0 corresponding to the static formulation, as expanded

in Eq. (33), is non-singular. In this case, it is straightforward to demonstrate that the power series matrix X

with n terms

X �
Xn

i�0

x2iXi �37�

in which

X0 � Fÿ1
0 and Xi � ÿX0

Xi

j�1

FjXiÿj; i � 1 . . . n �38�

is the unique inverse of F, such that

XF � FX � I�O�x2n�2�: �39�
(Eqs. (37)±(39) apply analogously for the inversion of a frequency-dependent sti�ness matrix, as proposed
in the introduction.)

In case of a ®nite domain, however, the frequency-free term F0 corresponding to the static formulation is
singular, as indicated in Eq. (24). Then, the evaluation of a unique inverse matrix X that satis®es Eq. (39) is
no longer straightforward, since it requires advanced use of the theory of generalized inverse matrices (Ben-
Israel and Greville, 1980; Zielke, 1970; Schulz, 1933). A detailed paper on this subject is being prepared for
publication. Its main results are summarized below.

For a ®nite domain, the inverse matrix X has to be expressed as

X �
Xn

i�ÿ1

x2iXi �40�

with an additional term xÿ2Xÿ1, as compared with Eq. (37), in which

Xÿ1 � V VTF1V
ÿ �ÿ1

VT: �41�

The matrix F1 is non-singular, since it is physically related to the ®rst mass matrix of the elastic body.
Introducing an auxiliary matrix Y

Y � Fÿ1
1 I
ÿ ÿ VVT

� �42�
one may demonstrate that the matrix coe�cient X0 of Eq. (40) is expressed as

X0 � Y YTF0Y
ÿ � VVT

�ÿ1
YT ÿ Xÿ1F2Xÿ1: �43�

1820 N.A. Dumont, R. de Oliveira / International Journal of Solids and Structures 38 (2001) 1813±1830



The remaining terms are obtained recurrently as

Xi � ÿX0

Xi�1

j�1

FjXiÿj ÿ Xÿ1

Xi�1

j�1

Fj�1Xiÿj; i � 1 . . . n: �44�

Although there is a negative power of frequency in Eq. (40) the matrix product

S � Fÿ1H �
Xn

i�0

x2i
Xi

j�ÿ1

XjHiÿj �
Xn

i�0

x2iSi �45�

required both for the expression of p� in Eq. (20), as a function of d, and as an intermediate step in the
evaluation of the sti�ness matrix K, does not contain the term xÿ2Xÿ1, since

HT
0 Xÿ1 � 0 �46�

according to Eqs. (25) and (41).
Finally, one expresses the sti�ness matrix K as the power series

K � HTFÿ1H �
Xn

i�0

x2i
Xi

j�0

HT
j Sj: �47�

3. From frequency to time-domain formulation

According to the de®nition of the time function s�t;x� in Eq. (28), one may compose the time-dependent
vector d of nodal displacements one is looking for as the Fourier series

d � d�t� �
X1

j�ÿ1
djs�t;xj� �48�

in which xj � 2pj=T is a circular frequency de®ned in terms of the integer number j and the time interval
T � t1 ÿ t0. In general, this is a truncated series. Moreover, it may be expressed either in the compact
expression presented above, for which a complex representation is required, or as sinus and co-sinus series
for non-negative values of j. The speci®c aspect of the Fourier series introduced above is not relevant in this
paper.

In a frequency formulation, given a vector of equivalent time-dependent forces p(t) acting on an elastic
body, the behavior of the damping-free structure may be modeled as

X1
j�ÿ1

K0djs�t;xj�
 

ÿ
Xn

i�1

x2i
j Midjs�t;xj�

!
� p�t�: �49�

In this equation, one expresses K0 explicitly as the sti�ness matrix of the static discrete-element formulation
and renames the remaining terms of the power series of K in Eq. (36) as ÿMi, as generalized mass matrices,
although they constitute a blending of mass and sti�ness matrices, in the generalized frequency-dependent
expression (Przemieniecki, 1968). The only exception is the matrix M1, which corresponds to the mass
matrix obtained in the conventional formulation that truncates after x2. The vectors dj of displacements are
the unknowns of the problem, to be determined as functions of the vector p(t) of applied equivalent nodal
forces as well as of the initial nodal displacements and velocities. The number n of frequency-related
matrices is arbitrary. The advantage of such a formulation based on a power series of frequencies is that it
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provides a more accurate ful®llment of the dynamic di�erential equilibrium equations of stresses at internal
points of the elastic body (Dumont and de Oliveira, 1997).

According to Eq. (48), one may express Eq. (49) alternatively as

K0dÿ
Xn

i�1

�ÿ1�iMi
o2id

ot2i
� p�t� �50�

which is a coupled set of higher-order time derivatives that makes use of the matrices obtained in the
frequency formulation.

4. An assessment of the non-linear eigenvalue problem related to Eq. (49)

Before further manipulating Eq. (50), it is necessary to solve the eigenvalue problem related to Eq. (49)

K0Uÿ
Xn

i�1

MiUX2i � 0 �51�

in which X2 is a diagonal matrix with as many eigenvalues x2 as the number of degrees of freedom of the
structure and U is a matrix whose columns are the corresponding eigenvectors. This non-linear eigenvalue
problem is di�cult to deal with, since numerical convergence cannot be easily assured and round-o� errors
occur unavoidably. Assuming that this eigenvalue problem has been solved adequately, one observes that
its solution is part of the solution of the augmented eigenvalue problem

K0 0 0 . . . 0

0 M2 M3 . . . Mn

0 M3 M4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 Mn 0 . . . 0

2666664

3777775
U00 U01 . . . U0;nÿ1

U10 U11 . . . U1;nÿ1

..

. ..
. . .

. ..
.

Unÿ1;0 Unÿ1;1 . . . Unÿ1;nÿ1

26664
37775

0BBBBB@

ÿ

M1 M2 M3 . . . Mn

M2 M3 . . . . . . 0

M3
..
. . .

. � � � 0

..

. ..
. ..

. . .
. ..

.

Mn 0 0 . . . 0

2666664

3777775
U00 U01 . . . U0;nÿ1

U10 U11 . . . U1;nÿ1

..

. ..
. . .

. ..
.

Unÿ1;0 Unÿ1;1 . . . Unÿ1;nÿ1

26664
37775

X2 0 . . . 0

0 X2
1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . X2
nÿ1

26664
37775
1CCCCCA � 0

�52�

in which

U00 � U; X2
0 � X2 and Uij � U0jX

2i
j i � 1; . . . ; nÿ 1; j � 0; . . . ; nÿ 1: �53�

The enlarged eigenvalues and eigenvectors of Eqs. (52) and (53) are in general complex. However, only
evaluation of the real subsets X and U is required in a practical application.

Since the augmented eigenvalue problem expressed by Eq. (52) is linear in X2
j , the corresponding aug-

mented eigenvectors constitute an orthogonal, however still not orthonormal, basis. One may state as a
normalization criterion for these eigenvectors that
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UT
00 UT

10 . . . UT
nÿ1;0

UT
01 UT

11 . . . UT
nÿ1;1

..

. ..
. . .

. ..
.

UT
0;nÿ1 UT

1;nÿ1 . . . UT
nÿ1;nÿ1

266664
377775

M1 M2 M3 . . . Mn

M2 M3 . . . . . . 0

M3
..
. . .

. � � � 0

..

. ..
. ..

. . .
. ..

.

Mn 0 0 . . . 0

2666664

3777775
U00 U01 . . . U0;nÿ1

U10 U11 . . . U1;nÿ1

..

. ..
. . .

. ..
.

Unÿ1;0 Unÿ1;1 . . . Unÿ1;nÿ1

26664
37775

� I:

�54�
Evaluating the submatrix (0,0) of the system above and taking into account Eq. (53), it follows that U00 � U
is an orthonormal basis only if

Xn

i�1

Xn

j�i

X2jÿ2iUTMjUX2iÿ2 � I: �55�

Let ~U be a set of non-normalized eigenvectors that satisfy both Eqs. (51) and (52). One may relate these
eigenvectors to the normalized ones by means of a diagonal matrix K

U � ~UK: �56�

Then, substituting this expression of U into Eq. (55) yields

K �
Xn

i�1

Xn

j�i

X2jÿ2i ~UTMj
~UX2iÿ2

 !ÿ1=2

: �57�

Moreover, one may state that, once Eq. (54) holds for normalized eigenvectors, premultiplication of Eq.
(52) by the transpose of the augmented basis of eigenvectors yields an augmented set of uncoupled
equations in X2

j . Taking into account Eq. (55), the subset of equations related to the subscript 0 ± the only
one of interest ± results in

UTK0U

 
�
Xnÿ1

i�1

Xnÿi

j�1

X2iUTMj�iUX2j

!
� X2: �58�

This equation, which relates frequencies to mass and sti�ness matrices, is the most important achieve-
ment of this paper, since it enables a remarkable simpli®cation of Eq. (50), as it shall be demonstrated
presently.

5. Use of a mode-superposition procedure

Independently of any assumption on the shape of the time-dependent displacements vector d(t) in Eq.
(50), one may introduce a set of auxiliary displacements vectors d�i��t�, in which the subscripts in brackets
indicate that they constitute a set (other than the one of Eqs. (48) and (49)), such that

d�i� � �ÿ1�i o
2id

ot2i
i � 1; . . . ; nÿ 1: �59�
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According to that, Eq. (50) may also be rewritten as an augmented system

K0 0 0 . . . 0

0 M2 M3 . . . Mn

0 M3 M4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 Mn 0 . . . 0

2666664

3777775
d

d�1�
d�2�

..

.

d�nÿ1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

M1 M2 M3 . . . Mn

M2 M3 . . . . . . 0

M3
..
. . .

. � � � 0

..

. ..
. ..

. . .
. ..

.

Mn 0 0 . . . 0

2666664

3777775
�d

�d�1�
�d�2�

..

.

�d�nÿ1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

p

0

0

..

.

0

8>>>><>>>>:

9>>>>=>>>>; �60�

in which two upper dots indicate the second derivative with respect to time.
Now, starting from Eq. (59), one approximates the time-dependent displacements d�t� and d�i��t� as a

®nite sum of contributions of the augmented (normalized) eigenvectors Ui0 introduced as the ®rst column of
enlarged eigenvectors in Eq. (52), multiplied by a vector of amplitudes g � g�t�, which are the new un-
knowns of the problem

d

d�1�
..
.

d�nÿ1�

8>>><>>>:
9>>>=>>>; �

U
UX2

..

.

UX2nÿ2

2664
3775g: �61�

According to that, Eq. (60) becomes

K0 0 0 . . . 0

0 M2 M3 . . . Mn

0 M3 M4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 Mn 0 . . . 0

2666664

3777775
U

UX2

..

.

UX2nÿ2

2664
3775g�

M1 M2 M3 . . . Mn

M2 M3 . . . . . . 0

M3
..
. . .

.
. . . 0

..

. ..
. ..

. . .
. ..

.

Mn 0 0 . . . 0

2666664

3777775
U

UX2

..

.

UX2nÿ2

2664
3775�g �

p

0

0

..

.

0

8>>>><>>>>:

9>>>>=>>>>;: �62�

Finally, premultiplying this equation by UT
i0, taking into account Eq. (53) and considering that the eigen-

vectors are normalized according to Eq. (55), such that Eq. (58) is satis®ed, one arrives at a very simple
expression for the submatrix �0; 0� of the augmented system of equations

X2g� �g � UTp: �63�
This equation constitutes an uncoupled system with as many second-order di�erential equations of time as
the number of eigenvectors one may consider of interest in the complete set U. As a consequence, each
separate element of g may be evaluated either numerically, via a ®nite-di�erence scheme, or analytically, by
means of DuhamelÕs integral (Przemieniecki, 1968), for given initial values of nodal displacements and
velocities.

6. Consideration of initial displacements and velocities

For non-homogeneous initial conditions, it is necessary to express g�t � t0� and _g�t � t0� as functions of
the initial nodal displacements d�t � t0� and velocities _d�t � t0�. For this sake, one has to solve the generally
rectangular system of Eq. (61) in terms of the unknowns g. First of all, one premultiplies both sides of Eq.
(61) by the augmented sti�ness matrix of Eq. (60) and, subsequently, premultiplies the resulting equation by
XT

i0. Then, it results
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UT X2UT . . . X2nÿ2UT
� � K0 0 0 . . . 0

0 M2 M3 . . . Mn

0 M3 M4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 Mn 0 . . . 0

2666664

3777775
d

d�1�
..
.

d�nÿ1�

26664
37775 � X2g �64�

since the eigenvectors are orthonormal and Eq. (58) holds. Performing the matrix operations indicated in
this equation and considering Eq. (59), one arrives at

g � Xÿ2UTK0d�
Xnÿ1

i�1

X2iÿ2UT
Xnÿi

j�1

Mj�i�ÿ1�j o2jd

ot2j
: �65�

However, this equation is only applicable if d and all its 2nÿ 1 derivatives are known at the beginning of
the time interval. Since in general only displacements and velocities are known, one is forced to obtain an
alternative expression.

Substituting the values of d�i��t�; i > 0, in Eq. (64), for their expressions given in Eq. (61), one obtains

UT X2UT . . . X2nÿ2UT
� � K0 0 0 . . . 0

0 M2 M3 . . . Mn

0 M3 M4 . . . 0

..

. ..
. ..

. . .
. ..

.

0 Mn 0 . . . 0

2666664

3777775
d

UX2g

..

.

UX2nÿ2g

26664
37775 � X2g: �66�

Then, performing all matrix operations indicated in this equation, it results that

UTK0U
� �

g � UTK0d �67�
since, according to Eq. (58), the series of matrix products multiplying g simpli®es to the term in brackets.
Finally, one concludes with no further assumption that, if Eq. (61) holds

g � UTK0U
� �ÿ1

UTK0d �68�
also holds and, consequently,

g�t � t0� � UTK0U
� �ÿ1

UTK0d�t � t0�;
_g�t � t0� � UTK0U

� �ÿ1
UTK0

_d�t � t0�:
�69�

Note that one could have written the sequence of equations

d � Ug;

K0d � K0Ug;

UTK0d � UTK0Ug;

�70�

thus arriving at Eq. (68) by means of a very simple procedure. However, premultiplying the second of
equations above with matrix UT, which may in general be rectangular (if only some deformation modes are
of interest), needs a justi®cation, which only occurs in the frame of the procedure just outlined: use of the
orthogonal property expressed by Eq. (58). Moreover, note that the inversion of the symmetric matrix
product indicated in Eq. (68) is unavoidable in the context of this non-linear frequency-dependent for-
mulation.
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7. Examples

7.1. Finite element analysis of a ®xed-free bar

Consider a ®xed-free, uniform bar subjected to a sudden application of constant axial force at the free
end. The bar is discretized with six equally spaced elements. Fig. 1 shows the displacement response of the
free extremity along time, considering one through four frequency terms, according to Eq. (10), and taking
into account all n � 6 vibration modes in each solution, in order to demonstrate the improvement in ac-
curacy. Target results is the analytical solution of the problem with 100 terms of the series. In all cases, time
integration has been performed using DuhamelÕs integral.

7.2. Boundary element analysis of a ®xed-free bar

Fig. 2 illustrates a ®xed-free bar submitted to a periodic load at its free end. The circular frequency is
80% of the ®rst natural frequency. The structure is analyzed as a two-dimensional (12 ´ 6 m2) problem of
potential with 36 linear boundary elements, as indicated. The normalized displacement response of node A
is given in Fig. 3.

Cases with one, two and three frequency terms were considered, as labeled as HBEM_2, HBEM_4 and
HBEM_6 in Fig. 3, respectively. Note how additional frequency terms dramatically improve the results.
Notwithstanding, the authors think that the used mesh discretization should yield still better results. An
implementation with higher-order boundary elements is being accomplished.

7.3. Numerical example: plane frame subjected to a periodic load

Fig. 4 illustrates a plane frame submitted to a horizontal periodic force. A target analysis was performed
using a total of 24 beam elements with traditional, frequency-independent mass and sti�ness matrices.
Then, the analysis was repeated using only three beam elements for the frame, initially with frequency-

Fig. 1. Displacement response at the end of a ®xed-free bar subjected to a step-function axial load.
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Fig. 2. Fixed-free bar submitted to a periodic load at its free end. The structure is discretized with 36 linear boundary elements.

Fig. 3. Normalized displacement response of node A of the ®xed-free bar in Fig. 2 as compared with the analytical solution.

Fig. 4. Plane frame submitted to a periodic load.
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independent mass and sti�ness matrices, and subsequently adding frequency-dependent terms, according to
Eq. (49). The ®rst six free-vibration frequencies of this plane frame are displayed in Table 1, as evaluated
according to Eq. (51) for the di�erent models. The models are characterized as Px_y, in which x is the total
number of elements and y is the highest frequency power in the series expansion of the generalized mass
matrix. Note the extreme accuracy of the frequency values for the model P3_8. The displacement response
of the point of application of the periodic force is displayed in Fig. 5 for each one of the discretized models.
The results with higher frequency terms, for a discretization with only 6 degrees of freedom, almost coincide
with the target solution, which has been carried out using 69 degrees of freedom.

Table 1

Natural vibration frequencies of the plane frame of Fig. 4

Frequen-

cies

P24_2 P3_2 Error (%) P3_4 Error (%) P3_6 Error (%) P3_8 Error (%)

1 2.8197 2.8330 0.467 2.8198 0.000 2.8196 0.006 2.8196 0.006

2 7.1035 8.2179 13.561 7.3454 3.293 7.1696 0.923 7.122 0.272

3 12.959 13.598 4.701 13.030 0.546 12.963 0.030 12.954 0.043

4 14.357 16.266 11.736 14.867 3.429 14.529 1.178 14.418 0.417

5 17.369 21.320 18.529 19.207 9.568 18.721 7.221 18.556 6.396

6 18.542 27.491 32.552 21.538 13.911 19.942 7.022 19.288 3.871

Fig. 5. Displacement response of the point of application of the periodic load of Fig. 4.
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8. Conclusions

In Section 1, the authors illustrate how matrix equations with higher-order frequency terms may orig-
inate from conventional ®nite element displacement formulations, either in a direct implementation or as a
result of dynamic condensation. In Section 2, it is shown that general frequency-dependent e�ective sti�ness
matrices are also obtained in the frame of the hybrid boundary element method, in a procedure that is
applicable to PianÕs hybrid ®nite elements, as a special case. In the core of the paper, a general set of
coupled equations involving higher-order time derivatives is transformed into a set of uncoupled second-
order di�erential equations of time, by means of an adequate mode superposition scheme. As a conse-
quence, well-established time integration algorithms are directly applicable, for arbitrary loads as well as
non-homogeneous boundary conditions. Although the theoretical developments are quite elaborate, it is
straightforward to implement the method in an existing ®nite element package, provided that the non-linear
eigenvalue problem expressed by Eq. (51) can be solved. In fact, the normalization procedure of Eq. (57) is
rather uncomplicated, whereas the ®nal second-order di�erential equation (63) looks traditional. Three
academic examples are displayed for illustration of the method, with results compared for di�erent numbers
of frequency terms. The method is particularly advantageous in case of dynamic condensation, when high
frequencies must be accounted for in terms of a small number of degrees of freedom.
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